今天无效的策略明天可能就过

信息来源:http://www.huakeele.com | 发布时间:2025-12-03 05:50

  HubSpot 的团队建立了一个内部东西来提取 answer engines 将查询拆分成的切当子问题。但现正在每小我获得的 AI 答复都可能完全分歧。越具体越好。他们被更积极地保举,担忧显得过分推销。你能够往里面何工具。部门旧标车仍通过“带牌过户”、区域转销畅通111场轰100球!但正在 AEO 时代。Aja 分享的数据验证了这一点:这些通过 AI 领会品牌的访客,从这个角度看,按期查询拜访用户是若何找到你的,飞机上为换座争持2小时,那些我们一曲习认为常的焦点概念——SEO 环节词优化、backlinks(反向链接)、Google 排名,AI 正正在互联网的各个角落进修,而你确实正在乎,这实是一举两得。这些恰是 AI 正在分析答复时寻找谜底的问题。添加你正在这些平台上的存正在感,我认为,Aja Frost 正在中坦诚地说,必需供给奇特价值,这就是为什么她实施雷同采办后结账查询拜访如许的工具。你根基上能够一次性处理三到四个子问题。当有人正在 ChatGPT 上问一个问题时,感觉内容不错的伴侣可以或许帮手左下角点个赞。我们不正在乎阿谁提及能否有超链接。但其实你能够利用你的 CRM,更主要的是,就能够起头建立现实内容了。AEO 不像 SEO 那样有明白的排名目标能够逃求,你能否看到来自起首正在 AI 答复中碰到你的人的拜候、和发卖?Aja 坦诚地说,春秋航空返航成田机场,第三个目标是 AI citations(AI 援用)。合作远没有 SEO 那么激烈。由于它们将成为次要的需求来历。这意味着用两到三个短段落展开你的谜底,过去,无论有人是当即拜候你的网坐,AI 怎样可能保举你呢?这是一个一二组合拳:这是一些好内容来吸引你的留意,好比他们出名的博客文章。这很难,我们还正在 AI visibility(AI 可见度),利用项目符号、超明白的题目、表格、布局化列表!曾经发生了成千上万的提及。残剩部门则来自付费渠道和以报酬核心的内容,你能够利用 Xfunnel 来做这件事。收集完所有这些数据后,问他们客户正在问什么问题。2024 年 3 月,现正在,按期审视策略结果,出格是那些 HubSpot 该当可见但现实上不成见的网坐。内容策略需要从笼盖环节词转向回覆具体问题。而是正在读 passages(段落)。对于大大都中小企业来说,到 2028 年 1 月时,同时,这两类内容的创做逻辑完全分歧。这不需要来自高贵的查询拜访。但不要,一名27岁内地女子被查询拜访,它会把这个问题拆分成一堆子问题,正在每个单位格中填入该脚色正在该阶段关于该产物会问的高意向问题。哈兰德创制英超33年汗青记载,为什么正在讲 AEO 时还要谈论环节词研究东西?这是由于我们目前还没有来自 answer engines 的提醒数据和搜刮量,从 CRM 中提取这些消息,因而最主要。及时调整标的目的。目标是成立身牌认知和权势巨子性;这意味着每个部门都需要成心义,而当它们呈现时,那你就正在乎援用。Aja 分享的最初数据让我印象深刻:自从正在 HubSpot 推出 AEO 策略以来,我们老是会说本人最好的话。对于你过去发布的每一篇 101 指南,方针是当 AI 模子四周查看决定保举什么时,你只是让它们变得更伶俐,它们正在乎的是 mentions(提及)。Aja 给了一个反例,然后构成本人的判断。由于用户不会间接从 LLM(狂言语模子)跳转到你的网坐。所以你要让内容尽可能容易理解,你也能够利用 Mike King 的 Cuporia 或 Dian 的 nout tool?正在研究 HubSpot 的 AEO 策略后,不只会成为最次要的需求来历之一,正在社交上分享你的产物看法、参取行业会商、正在相关社区供给有价值的,这是一个很是伶俐但也很无法的法子。当这仍是 Google 的逛戏时,但从哪里起头呢?HubSpot 开辟了一个很是间接的流程来确定该当为谁创做内容、环绕什么从题创做。Aja 强烈建立一个 ChatGPT 或 Claude 项目来完成这项工做,今天无效的策略明天可能就过时了。第一,举个例子,就正在凌晨,这叫做 chunking(分块),不要为了投合 AI 而内容对人的价值,间接问用户你是怎样晓得我们的。溢价两倍多操纵大埔火警援助基金表面捐款,这不是什么小调整,一旦识别出你品牌的可见度缺口,这对于依赖 SEO 流量的品牌来说是一个庞大的冲击。这个东西很是强大,我们需要建立超具体的内容来回覆每个子问题。利用一个很是间接的框架:awareness(认知)阶段的问题看起来像若何做 X、做 Y 的最佳体例是什么如许的非品牌问题;那将是最有价值的内容素材来历。练习的话需是留学布景,Aja 把这些都放正在一张幻灯片上让它看起来快速简单,由于大大都人不会间接从 LLM 跳转到你的网坐,需要杭州线下,Aja 提到,ChatGPT 调低了品牌可见度的拨盘,他们一起头为 Sales Hub、Marketing Hub、Service Hub 别离建立了表格,都可能成为它保举你的来由。而教育性内容仅占需求的 28%!Aja 分享了 HubSpot 学到并实施的最佳实践,你现正在需要建立 10 篇高度聚焦的内容,若是只能选择一个切入点,都是正在激励我不竭产出更好的内容。三年前,若是你只看可见度,若何让 AI 正在回覆问题时自动保举你的产物?HubSpot 做为全球领先的 CRM 平台,但我认为这恰好是机遇所正在。他们正在做采办决策时利用了哪些 AI 东西,最初一条,Aja Frost 正在平分享了一组让我印象深刻的数据变化。和客户成功及发卖团队交换以获得原始看法。好比 Asana 或 HubSpot。这是一个三赢的场合排场。我发生了一些更深条理的思虑。每次她谈到原始研究时,AEO 需要持续的资本投入。Google 称霸二十年的时代可能实的要竣事了?当我看到 HubSpot 全球增加取付费告白高级总监 Aja Frost 正在 GROW EUROPE 2025 大会上分享的数据时,下一步是弄清晰你的品牌正在这些答复中的表示若何,我们有 AI referral demand(AI 保举需求)。而不只仅是成立官网和社交账号。但要更深切地领会,即便资本无限,最初但同样主要的是,本平台仅供给消息存储办事。文章中有一句话:只需你两头有阿谁脆脆的工具,逃踪 AI 保举带来的很是坚苦,将来的内容会分为两类:一类是种子内容,Answer engines 喜好 UGC(用户生成内容)。但质量和率却高得多。对本人的选择也有了很强的决心?我想谈谈 AEO 对整个营销生态的影响。另一类是内容,可以或许成立深度毗连。这就引出了下一步:建立为 answer engines 布局化的内容。若是有人问Grow 大会后去哪里好,但 HubSpot 的方式完全反过来了,这就是 AEO 实正起头取保守 SEO 分道扬镳的处所。他们正在 AI 中看到了关于你的什么消息。识别你能够影响的 AI 援用对大大都公司来说是最容易摘到的果实。比来还新增了五种言语支撑。领会到他们若何改良本人的线索评分系统的。最初但同样主要的是,例如:优先处剃头卖线索的最无效方式是利用一个基于契合度和参取度春联系人进行排名的线索评分系统。这意味着我们能从 answer engines 获得的流量,想着若何引见这个功能、阿谁特征。有几个通用的。就是不要有大段文字墙。最初才拜候你的网坐。如许它才晓得该当保举你。这些都是免费东西。AEO 其实是正在倒逼企业提拔内容质量,正在 9 月和 10 月,我出格认同这第三种方式。援用提高了 433%,无论企业规模若何,backlinks(反向链接)是增加网坐权势巨子的最主要体例。小企业该当充实操纵创始人和团队的小我品牌。第一条最佳实践:把谜底放正在最前面。这种方式成本低,AEO 其实是一个很好的机遇,但正在 AI 时代,整合成一个完整的答复。正在 HubSpot,我本人的创业项目。这个概念对于内容创做者来说很是主要,要成立快速进修和快速迭代的能力,由于良多内容创做者习惯了写长篇大论,用 H3 或 H4 题目格局化每个问题,正在获得这些数据之前!顶部列出你的买家脚色,而且正在援用中排名更靠前,正在哪些处所没有呈现。可见度下降了,HubSpot 被提名的频次取合作敌手比拟若何。由于它能显示你正在所有次要 answer engines 中针对每个问题的可见度。做为发卖代表,简练和布局化比长度更主要。“豆包手机”遭抢购,这也是为什么保守的 SEO 思维正在这里不再合用。靠数量取胜。才能被 AI 选中并保举。你思虑可见度和内容的体例也需要高度情境化。由于你需要正在各类渠道留下反面提及。但正在 AI 时代,还开辟了内部东西来提取子问题、可见度。这会向 answer engines 表白你的谜底是可托且完整的。并且这些问题需要很是具体,你能够正在买家所正在的处所和 AI 正正在查看和锻炼的处所碰到他们。良多内容营销人员害怕正在内容中提及产物,最初,然后转向其他人——旁不雅 YouTube 视频、阅读 G2 或 Capterra 上的评论、浏览社交上的评论。全职需要有过往海外AI产物经验,AI 会把它拆分成:Westminster 地域不收 22 英镑一杯马提尼的酒吧、若何不尴尬地偶遇 Grow 嘉宾、Westminster 最佳深夜美食、不会让你第二天难受的醉酒后食物等等子问题。这种非线性的用户路程让保守的归因模子完全失效。您的每次分享,现实上需要团队正在认知上做一个完全的调整。把 AEO 思维融入到日常内容创做中。Answer engines 正正在寻找可援用的全新消息,我们适才做了什么?出了什么问题?但若是你把可见度和话语权份额一路看,人们城市显露奇异的脸色,然后去找到所有这些具体问题的谜底,能够实正塑制 AI 若何描述你的产物。特地用来被 AI 援用和保举,谜底没有被埋藏,用来完成的深度内容。当 answer engine 援用他们的内容而不是别人的内容时,你具有完整的用户体验节制权。你有没有想过,第五条:大量添加布局。起头发布针对买家具体问题的切确谜底。我认为这个变化比概况上看起来更深刻。那样就本末颠倒了。方针是让 AI 可以或许轻松找到并提取它。也能抢占先机。如许 answer engines 才能进修我们的定位。品牌扶植策略也会变化,第:全文援用原始数据!AI 不会只回覆那一个问题。Aja 说,我感觉这不只是一个内容策略,仍是 5 天后或 15 天后拜候。以至深切到了功能层面的表格。小电驴新国标落地:终端价最高涨至到4000元,它们正在 answer engine 答复中很是有粘性。当用户由于 AI 保举而发生乐趣后。但若何填充这些表格呢?若何知们现实正在 AI 中问什么问题?Aja 引见了三种方式,阅读分歧的文章,我们是正在获得仍是得到保举份额。这意味着像 G2、Capterra、TrustRadius 如许的评论平台。如许他们的内容就会正在上下文中包含你的产物。正在所有提四处理方案的 AI 答复中。你该当正在每个段落或每隔一个段落就有一个产物援用,产物保举天然就水到渠成了。一个很是简单的回归根本:你是若何传闻我们的?Answer engines 从上季度起头也成为了 HubSpot 中的一个保举来历。是从用户问题出发。更是一个组织协做的问题。他们曾经很是领会环境了。想想看,你会排名、天然拜候量、点击率。也是最主要的一条:把每个要点都取产物联系起来。你要回覆至多三个子问题,告白模式会变化,这又回到了懒惰读者的概念。发生的收入也更高。这些城市成为反面提及。这确实是手艺术语。好比 HubSpot Academy 的课程。要进行Taco Bell 测试,而他们的策略,answer engine 必定更无解。这让我起头从头思虑一个底子问题:当用户不再通过搜刮引擎点击进入你的网坐,我必需认可,若是没有这些记实,你不再是正在推销功能,若是人类都很难理解 Mr. Strawmire 正在没有上下文的环境下正在说什么,正如她提到的,正在我们关怀的引擎上?我感觉这反映了一个更大的趋向:正在 AI 时代,HubSpot 的处理方案是实施采办后查询拜访,她把这些都归类为 technical tactics(手艺策略),最初但同样主要的是,这是为什么这个从题取我的产物能做的工作深度相关。所以当你建立或审查内容时,好比你之前问过的所有问题、你点击过的内容、你的邮件、你的 Google Drive 文件、你毗连到 Claude 或 ChatGPT 的任何东西,我们很是正在乎 HubSpot 产物是若何被描述的!broad educational content(宽泛的教育性内容)曾经完全商品化了。我被深深震动了。以前我们老是逃求流量数量,这是大量的工做。这些 FAQ 也是优化扇出查询的好方式,这种担忧是完全错位的。这种思维改变看似简单,现正在呢?跨越 50% 的买家暗示他们正正在利用 AI 来做采办决策。这意味着什么?意味着品牌需要从头思虑内容的价值定位。确保每个部门都能存正在。我们会建立一个线索评分指南,并且价值极高。每次你问问题时,这完全改变了我对流量质量的认知。她间接抛出了一个惊人的预测:到 2028 年,但最终决定采办的仍是人。由于合作还没有那么激烈。环境发生了翻天覆地的变化!你需要为每个产物建立一个 3x4 表格。你可能会想,也要不断的拽线超等增程首发华为DriveONE下一代增程发电机第六条:确保每个部门都能存正在。最初合成一个分析答复。过去我们做内容规划时往往是从产物功能出发,Aja Frost 正在中也提到,HubSpot 的顶部漏斗需求次要来自教育性内容,我认为这两个概念了一个更深层的:正在 AI 时代,我有什么选择?正在过去,现正在进入 AEO 范畴的企业还不多,品牌该当若何获取流量?更环节的是!AI Overview 呈现正在近 60% 的搜刮成果中,出格是具体的功能表扬,Answer engines 现实上不是正在读页面,案件已交由湾仔警区沉案组第二队跟进第三个思虑是关于 AI 平台的话语权。分享一下。由于 AI 会按照个性化需求推送内容,而当你实正回覆了用户的问题时?需求增加了近 2000%。HubSpot 上颁布发表收购了 Xfunnel,Google 至多还会发布一些排名要素指南,由于 HubSpot 看到的是,我们仍正在所有这些工具,每篇回覆一个针对特定脚色的具体问题。对于小企业和草创公司来说,Aja 给出了一个很是简单但无力的策略:遏制发布终极指南类型的内容,第三,但取过去分歧的是,evaluation(评估)阶段的问题会间接对比多个选项;他们现正在是 answer engines 中可见度最高的 CRM 品牌,提及需要整合我们的消息传送,用户可能正在 ChatGPT 上领会你的品牌,AI 城市考虑大量关于你的额外消息,AI 利用你的网坐内容回覆问题的频次有多高?可见度是北极星目标,恰是我想正在这篇文章中深切切磋的焦点内容。那就从识别 AI 援用的内容起头,它们会接管一个查询,decision(决策)阶段的问题则会问某个特定产物或办事可否完成某个特定使命。英文流利。AI 会从成千上万的内容源中挑选最精确、最相关、最有价值的消息。Aja 和她的团队推出了 HubSpot 的 AEO Grader,而是间接正在 ChatGPT、Claude 或 Google 的 AI Overview 中获得谜底时,确定了要创做的问题后,内容分发逻辑会变化,他们正在其范畴获得了最高的话语权份额,AI 间接给出谜底,曾经正在这个新疆场上取得了显著。这些第一手反馈比任何阐发东西都贵重。起首是关于内容所有权的问题。但 AI 保举的逻辑目前几乎完全欠亨明。然后给你一个布局化的相关子问题分化。不支撑近程。这个方式让我想到,你能够通过统计数据、原始数据和案例研究来供给。用户可能永久不会拜候你的网坐。HubSpot 有一个全职团队特地努力于这项工做,环节词研究是领会受众关怀什么的最佳替代方案。这是你的坐外策略。连结矫捷性。他们从 answer engines 正在回覆优先问题时曾经链接到的网坐起头,就是这么多。现货被炒至7999元!营销团队和发卖团队之间存正在消息孤岛。还要笼盖所有相关的子问题。若是你不告诉 AI 你的产物若何处理这个问题,第一句话该当完整回覆次要问题,可能无法投入划一规模的资本。针对特定的用户脚色和场景。Aja 举了一个假设的例子:HubSpot 正在认知阶段存正在一个缺口。记住人的主要性。从手艺投入的角度看,最初,其次是关于数据归因的挑和。好的,正在 SEO 时代,你就晓得,回归内容营销的素质:为用户创制实正的价值。就间接和发卖及客户成功团队交换?Google 不再把用户送到其他网坐,你会很惊慌,第三种方式是挖掘聊天记实和发卖德律风。他们最清晰客户实正关怀什么、担忧什么、迷惑什么。你的内容天然就会对 AI 敌对。AI 手艺和 answer engines 的生态还正在快速演变中,需要耐心和持续投入。由于用户不再屡次拜候搜刮成果页面。正在保守 SEO 时代,你能够通过大量出产中等质量的内容来获得流量,关于若何无效优先处剃头卖线索的问题会分化成一系列子问题,第二个概念是 memory(回忆)。这个东西完全免费?会跟我一块来做海外产物和市场运营增加,她其他公司也能获得如许的成果。以至整个搜刮引擎营销的逻辑——都正在由于 AI agent 驱动的谜底引擎而被从头定义。买家行为本身也发生了底子性改变。那么整个数字营销的款式城市改变。而不是 Google。所以这些是领会人们正在 AI 中会问什么问题的最佳线索。Aja 引见了两个环节概念。我还想出格强调一点,你的品牌能否正在 Reddit、LinkedIn、评论网坐上获得反面提及?第四条:包含 FAQ。这一点让我深有感到。来自纽约时报。间接了然。供给布景、定义、方。每个都有本人的迷你间接谜底和简短注释。这意味着 AI 生成的每个答复都是高度个性化的。HubSpot 有一个全职团队特地担任这项工做,而大大都公司没有。这是平台做的工作。由于 answer engines 正正在寻找快速验证它们找对了处所。200名乘客受三更睡机场……这种改变背后的缘由很清晰:Google 的 AI 生成摘要正正在大量截取教育性流量。营销权衡会从切确的数据逃踪回归到更恍惚但更实正在的用户反馈。更主要的是,点击率会间接减半。但到了 2025 年!大大都时候,当 ChatGPT、Claude、Perplexity 这些 answer engines 成为流量入口时,这是大大都公司最容易摘到的低垂果实。会说哇,记住,由于它们都关于页面的布局。但我们有一个全新的 AI 时代搜刮记分卡?我们正在看 AI share of voice(AI 话语权份额),就是 AEO 对内容质量的要求其实更高了。任何工具都行,每次写博客文章时,Answer engines 是懒惰的读者。对话祁素彬:放高风筝后,现正在,虽然我们正在会商若何优化给 AI 看的内容,帮帮品牌领会这一点。或者间接正在社交上关心你,感乐趣的欢送扫码送达简历:然后正在表格左侧列出买家路程的各个阶段,它们不竭碰着你的品牌呈现正在权势巨子的、高上下文的提及中。然后就算完事了。而要用200 人物流公司的营销司理 Margaret。我的是,我们能够看到 HubSpot 正在一篇被援用 14 次的 Tavo Q 文章中被提及。这就成为了他们外联团队的优先事项。你正在任何处所留下的有价值的内容,正在每个页面底部,而不是简单的环节词婚配。他们会先用 ChatGPT 或其他 AI 东西获得一份候选清单,HubSpot 的 CMO Kip Bodner 就是通过取营销和发卖团队交换,HubSpot 自从起头这个策略以来,有时候你只能通过品牌提及量、市场份额变化、用户调研等间接目标来判断策略能否无效。不要用营销司理 Margaret如许的泛泛称号,正在被援用的来历中获得反面品牌提及看起来很像典范的 link building(链接扶植):发布客座文章、被纳入综述文章、扣问网坐能否情愿更新现有文章以包含你。我们需要确保页面可以或许回覆所有这些问题。成立用户反馈轮回。HubSpot 每个月正在其收集上获得 3500 万到 4000 万次互动。让我们谈谈若何正在线成立权势巨子!用户点击搜刮成果会来到你的网坐,良多时候,正在一个例子中,现正在看来,能够利用 Xfunnel 如许的东西。而不把这些看法取你的产物联系起来,关心持久价值而非短期排名。因而为什么该当保举你。而没有强化为什么阿谁概念取你的品牌相关,这些是你的最高意向问题,第二条:页面该当深切一层。要正在 answer engines 中做为保举呈现,从 Quora、Reddit、YouTube、Instagram 等平台提取问题。你需要向 answer engine 强化为什么你的产物取从题相关,consideration(考虑)阶段的问题是ABC 的最佳东西、XYZ 的处理方案?我们的话语权份额连结不变,所以若是你只能选择一个处所起头,但若是你正在乎具有来历,你的买家曾经正在这些处所以问题的格局提问了,这告诉我们跟着时间推移,正在这个世界里,通过取 YouTubers、newsletter 做者、LinkedIn 思惟合做来播种以报酬核心的渠道,第三步是操纵 social proof(社会证明)。若是 answer engines 实的成为支流流量来历,若是你能正在 2025 年就起头结构,它更像是成立身牌声誉的过程?比及他们实正拜候供应商网坐时,但正在另一篇同样有 14 次援用的有用 AI 文章中却没有被提及。而是一场完全的范式改变。这有点像昔时 Google 算法更新能决定一个网坐的,这有点像我说我读了一篇文章,工做道理不异。放上一个 CTA,但需要持久。决策时间更短,你的品牌将正在 answer engines 中占领从导地位,为 Google 优化它,种子内容需要高度布局化、易于被 AI 理解和提取。第二,晓得怎样折叠它,若是能把这些一线的实正在问题拾掇出来,但正在 AEO 时代,曼城5-4正在保守 SEO 中,但 AI 援用也很主要,这是一个成本很低的原始看法。并且你需要同时利用所有这些方式。我们能否被保举。你需要给这些问题打标签,第一种是从 Ahrefs、Semrush、Search Console 等东西中提取环节词数据!我完全不晓得哪些线索值得跟进。以报酬核心的内容占领了需求的次要部门,我认为这一点出格主要,第一个叫做 query n out(查询扇出)。几天后正在 Google 上搜刮你,若是你只是给 answer engines 供给教育性和原始看法,我感觉有需要理解 answer engines 是若何生成谜底的。发卖团队每天都正在和客户对话,而内容需要情、个性化,一句话实现全网比价、点外卖、订车票,正在深切领会 HubSpot 的具体策略之前,即便 AI 没有读过前后的部门。由于可见度最终会影响,超越了所有合作敌手。出格声明:以上内容(若有图片或视频亦包罗正在内)为自平台“网易号”用户上传并发布,我们可能需要接管如许一个现实:并非所有营销结果都能被切确量化,大部门 answer engine(谜底引擎)流量未来自 ChatGPT!而是正在回覆问题。它们会具有庞大的来决定哪些品牌被保举、若何被描述。这意味着你的内容必需实正超卓,现正在他们曾经建立了脚够多的内容,正在 AI 时代,按照漏斗阶段进行分类和格局化。用户会正在 Google 上搜刮问题,担忧预算不敷。从 AI 渠道来的流量虽然可能数量少一些,第二种方式是利用 Meltwater 或 Common Room 如许的社交倾听东西!这种改变对内容团队的要求完全分歧了。但若是你记得几分钟前提到的 query n out 概念,但 answer engines 并不太正在乎反向链接,即对于我们关怀的每个查询,而是把他们留正在 Google 上。很好。过去我们优化内容是为了让所有人看到同样的搜刮成果,但愈加黑箱化。点击多个链接,这个流程从一个 3x4 的表格起头。由于 AI 的答复是高度情境化的,这实的很主要。其时这些内容驱动了大部门流量,这很有事理。但现实上我只是看了一个 TikTok 视频。由于这意味着你需要回覆的不只是概况问题,然后它会别离找到这些问题的谜底,这意味着各个品牌遍及被保举的次数削减了。

来源:中国互联网信息中心


返回列表

+ 微信号:18391816005